

Mercator Research Institute on Global Commons and Climate Change Priestley International Centre for Climate

What CDR options do we have and are they ready?

Jan C. Minx

Demystifying negative emissions technologies

EU Pavilion

COP24 Katowice, Poland

12.12.2018

CO₂ removal is used to compensate for atmospheric overshoot and residual emissions

UNIVERSITY OF LEEDS Priestley International Centre for Climate

While the recent discussions have mainly focussed on BECCS, the spectrum of options is large

NATURAL FORESTRY / AGRICULTURE

Biochar Partly burnt biomass is added to soil absorbing additional CO₂

Soil Carbon Sequestration

Land management changes increase the soil carbon content, resulting in a net removal of CO_2 from the atmosphere

Other Land-Use/Wetlands Restoration or construction of high carbon density, anaerobic ecosystems

COMBINED

NATURAL + TECHNOLOGICAL

Bioenergy with Carbon Capture and Storage (BECCS)

Plants turn CO₂ into biomass that fuels energy systems; CO₂ from conversion is stored underground

TECHNOLOGICAL

ENERGY / INDUSTRY

Accelerated Weathering

Natural minerals react with CO_2 and bind them in new minerals

CO₂ is removed from ambient air and stored underground

Direct Air Capture

Ocean Alkalinity Enhancement

Alkaline materials are added to the ocean to enhance atmospheric drawdown and negate acidification

CO₂ to Durable Carbon

CO₂ is removed from the atmosphere and bound in long-lived materials

UN Environment (2017), The Emissions Gap Report 2017

The discussion on CDR is not new, but has diversified over time

MC

Priestley International Centre for Climate

Most CDR options show relevant potentials, but all have limits

Priestley International Centre for Climate

UNIVERSITY OF LEEDS

Important trade-offs between timing, costs and reversability

NATURAL

FORESTRY / AGRICULTURE

Afforestation/ Reforestation Tree growth takes up CO₂ from the atmosphere

Biochar Destlutions to adde

Partly burnt biomass is added to soil absorbing additional CO₂

Less costly

Closer to deployment

More vulnerable to reversal

Soil Carbon Sequestration

Land management changes increase the soil carbon content, resulting in a net removal of CO₂ from the atmosphere

Other Land-Use/Wetlands

Restoration or construction of high carbon density, anaerobic ecosystems

COMBINED

NATURAL + TECHNOLOGICAL

Bioenergy with Carbon Capture and Storage (BECCS)

Plants turn CO₂ into biomass that fuels energy systems; CO₂ from conversion is stored underground

TECHNOLOGICAL

ENERGY / INDUSTRY

Accelerated Weathering

Natural minerals react with CO₂ and bind them in new minerals

Direct Air Capture

 CO_2 is removed from ambient air and stored underground

Ocean Alkalinity Enhancement

Alkaline materials are added to the ocean to enhance atmospheric drawdown and negate acidification

CO₂ to Durable Carbon

CO₂ is removed from the atmosphere and bound in long-lived materials

- More costly <
- Greater R&D needs <
- Less vulnerable to reversal <-

Centre for Climate

UN Environment (2017), The Emissions Gap Report 2017

enhance at drawdown acidificatio CO₂ to Dur CO₂ is rem

Technological transitions often take time! Urgency in developing CDR portfolios

MC

The need for acceleration in innovation and diffusion of CDR technologies

Thanks!

Contact: Jan Minx

Mercator Research Institute on

Global Commons and Climate Change gGmbH

Torgauer Str. 12–15 | 10829 Berlin | Germany

- tel +49 (0) 30 338 55 37 250
- mail minx@mcc-berlin.net
- web www.mcc-berlin.net

MCC was founded jointly by Stiftung Mercator and the Potsdam Institute for Climate Impact Research

